Transformers documentation

ALBERT

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.52.3).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

PyTorch TensorFlow Flax SDPA

ALBERT

ALBERT is designed to address memory limitations of scaling and training of BERT. It adds two parameter reduction techniques. The first, factorized embedding parametrization, splits the larger vocabulary embedding matrix into two smaller matrices so you can grow the hidden size without adding a lot more parameters. The second, cross-layer parameter sharing, allows layer to share parameters which keeps the number of learnable parameters lower.

ALBERT was created to address problems like — GPU/TPU memory limitations, longer training times, and unexpected model degradation in BERT. ALBERT uses two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT:

  • Factorized embedding parameterization: The large vocabulary embedding matrix is decomposed into two smaller matrices, reducing memory consumption.
  • Cross-layer parameter sharing: Instead of learning separate parameters for each transformer layer, ALBERT shares parameters across layers, further reducing the number of learnable weights.

ALBERT uses absolute position embeddings (like BERT) so padding is applied at right. Size of embeddings is 128 While BERT uses 768. ALBERT can processes maximum 512 token at a time.

You can find all the original ALBERT checkpoints under the ALBERT community organization.

Click on the ALBERT models in the right sidebar for more examples of how to apply ALBERT to different language tasks.

The example below demonstrates how to predict the [MASK] token with Pipeline, AutoModel, and from the command line.

Pipeline
AutoModel
transformers CLI
import torch
from transformers import pipeline

pipeline = pipeline(
    task="fill-mask",
    model="albert-base-v2",
    torch_dtype=torch.float16,
    device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.", top_k=5)

Notes

  • Inputs should be padded on the right because BERT uses absolute position embeddings.
  • The embedding size E is different from the hidden size H because the embeddings are context independent (one embedding vector represents one token) and the hidden states are context dependent (one hidden state represents a sequence of tokens). The embedding matrix is also larger because V x E where V is the vocabulary size. As a result, it’s more logical if H >> E. If E < H, the model has less parameters.

Resources

The resources provided in the following sections consist of a list of official Hugging Face and community (indicated by 🌎) resources to help you get started with AlBERT. If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

Text Classification
Token Classification
Fill-Mask
Question Answering

Multiple choice

AlbertConfig

class transformers.AlbertConfig

< >

( vocab_size = 30000 embedding_size = 128 hidden_size = 4096 num_hidden_layers = 12 num_hidden_groups = 1 num_attention_heads = 64 intermediate_size = 16384 inner_group_num = 1 hidden_act = 'gelu_new' hidden_dropout_prob = 0 attention_probs_dropout_prob = 0 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 classifier_dropout_prob = 0.1 position_embedding_type = 'absolute' pad_token_id = 0 bos_token_id = 2 eos_token_id = 3 **kwargs )

Parameters

  • vocab_size (int, optional, defaults to 30000) — Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling AlbertModel or TFAlbertModel.
  • embedding_size (int, optional, defaults to 128) — Dimensionality of vocabulary embeddings.
  • hidden_size (int, optional, defaults to 4096) — Dimensionality of the encoder layers and the pooler layer.
  • num_hidden_layers (int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
  • num_hidden_groups (int, optional, defaults to 1) — Number of groups for the hidden layers, parameters in the same group are shared.
  • num_attention_heads (int, optional, defaults to 64) — Number of attention heads for each attention layer in the Transformer encoder.
  • intermediate_size (int, optional, defaults to 16384) — The dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.
  • inner_group_num (int, optional, defaults to 1) — The number of inner repetition of attention and ffn.
  • hidden_act (str or Callable, optional, defaults to "gelu_new") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.
  • hidden_dropout_prob (float, optional, defaults to 0) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
  • attention_probs_dropout_prob (float, optional, defaults to 0) — The dropout ratio for the attention probabilities.
  • max_position_embeddings (int, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large (e.g., 512 or 1024 or 2048).
  • type_vocab_size (int, optional, defaults to 2) — The vocabulary size of the token_type_ids passed when calling AlbertModel or TFAlbertModel.
  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
  • layer_norm_eps (float, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.
  • classifier_dropout_prob (float, optional, defaults to 0.1) — The dropout ratio for attached classifiers.
  • position_embedding_type (str, optional, defaults to "absolute") — Type of position embedding. Choose one of "absolute", "relative_key", "relative_key_query". For positional embeddings use "absolute". For more information on "relative_key", please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on "relative_key_query", please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).
  • pad_token_id (int, optional, defaults to 0) — Padding token id.
  • bos_token_id (int, optional, defaults to 2) — Beginning of stream token id.
  • eos_token_id (int, optional, defaults to 3) — End of stream token id.

This is the configuration class to store the configuration of a AlbertModel or a TFAlbertModel. It is used to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ALBERT albert/albert-xxlarge-v2 architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Examples:

>>> from transformers import AlbertConfig, AlbertModel

>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()

>>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig(
...     hidden_size=768,
...     num_attention_heads=12,
...     intermediate_size=3072,
... )

>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

AlbertTokenizer

[[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary

AlbertTokenizerFast

class transformers.AlbertTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = True remove_space = True keep_accents = False bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )

Parameters

  • vocab_file (str) — SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.
  • do_lower_case (bool, optional, defaults to True) — Whether or not to lowercase the input when tokenizing.
  • remove_space (bool, optional, defaults to True) — Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
  • keep_accents (bool, optional, defaults to False) — Whether or not to keep accents when tokenizing.
  • bos_token (str, optional, defaults to "[CLS]") — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the cls_token.

  • eos_token (str, optional, defaults to "[SEP]") — The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the sep_token.
  • unk_token (str, optional, defaults to "<unk>") — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
  • sep_token (str, optional, defaults to "[SEP]") — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
  • pad_token (str, optional, defaults to "<pad>") — The token used for padding, for example when batching sequences of different lengths.
  • cls_token (str, optional, defaults to "[CLS]") — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
  • mask_token (str, optional, defaults to "[MASK]") — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

Construct a “fast” ALBERT tokenizer (backed by HuggingFace’s tokenizers library). Based on Unigram. This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs to which the special tokens will be added
  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

list of input IDs with the appropriate special tokens.

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An ALBERT sequence has the following format:

  • single sequence: [CLS] X [SEP]
  • pair of sequences: [CLS] A [SEP] B [SEP]

Albert specific outputs

class transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput

< >

( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: typing.Optional[torch.FloatTensor] = None sop_logits: typing.Optional[torch.FloatTensor] = None hidden_states: typing.Optional[tuple[torch.FloatTensor]] = None attentions: typing.Optional[tuple[torch.FloatTensor]] = None )

Parameters

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) — Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
  • sop_logits (torch.FloatTensor of shape (batch_size, 2)) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Output type of AlbertForPreTraining.

class transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput

< >

( loss: Optional[tf.Tensor] = None prediction_logits: Optional[tf.Tensor] = None sop_logits: Optional[tf.Tensor] = None hidden_states: tuple[tf.Tensor] | None = None attentions: tuple[tf.Tensor] | None = None )

Parameters

  • prediction_logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
  • sop_logits (tf.Tensor of shape (batch_size, 2)) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Output type of TFAlbertForPreTraining.

Pytorch
Hide Pytorch content

AlbertModel

[[autodoc]] AlbertModel - forward

AlbertForPreTraining

[[autodoc]] AlbertForPreTraining - forward

AlbertForMaskedLM

[[autodoc]] AlbertForMaskedLM - forward

AlbertForSequenceClassification

[[autodoc]] AlbertForSequenceClassification - forward

AlbertForMultipleChoice

class transformers.AlbertForMultipleChoice

< >

( config: AlbertConfig )

Parameters

  • config (AlbertConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.call() and PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (see input_ids above)
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput or tuple(torch.FloatTensor)

A transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (AlbertConfig) and inputs.

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) — Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • sop_logits (torch.FloatTensor of shape (batch_size, 2)) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The AlbertForMultipleChoice forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, AlbertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-xxlarge-v2")
>>> model = AlbertForMultipleChoice.from_pretrained("albert/albert-xxlarge-v2")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

AlbertForTokenClassification

[[autodoc]] AlbertForTokenClassification - forward

AlbertForQuestionAnswering

[[autodoc]] AlbertForQuestionAnswering - forward

TensorFlow
Hide TensorFlow content

TFAlbertModel

[[autodoc]] TFAlbertModel - call

TFAlbertForPreTraining

[[autodoc]] TFAlbertForPreTraining - call

TFAlbertForMaskedLM

[[autodoc]] TFAlbertForMaskedLM - call

TFAlbertForSequenceClassification

[[autodoc]] TFAlbertForSequenceClassification - call

TFAlbertForMultipleChoice

[[autodoc]] TFAlbertForMultipleChoice - call

TFAlbertForTokenClassification

[[autodoc]] TFAlbertForTokenClassification - call

TFAlbertForQuestionAnswering

[[autodoc]] TFAlbertForQuestionAnswering - call

JAX
Hide JAX content

FlaxAlbertModel

[[autodoc]] FlaxAlbertModel - call

FlaxAlbertForPreTraining

[[autodoc]] FlaxAlbertForPreTraining - call

FlaxAlbertForMaskedLM

[[autodoc]] FlaxAlbertForMaskedLM - call

FlaxAlbertForSequenceClassification

[[autodoc]] FlaxAlbertForSequenceClassification - call

FlaxAlbertForMultipleChoice

[[autodoc]] FlaxAlbertForMultipleChoice - call

FlaxAlbertForTokenClassification

[[autodoc]] FlaxAlbertForTokenClassification - call

FlaxAlbertForQuestionAnswering

[[autodoc]] FlaxAlbertForQuestionAnswering - call

< > Update on GitHub